Predicting the Evolution Trend of Water and Land Resource Carrying Capacity Based on CA–Markov Model in an Arid Region of Northwest China

Author:

Xu Cundong,Hu XiaomengORCID,Liu Zijin,Wang Xin,Tian JunjiaoORCID,Zhao Zhihong

Abstract

The evolution of water and land resource carrying capacity significantly impacts optimal water and land resource allocation and regional sustainable development in arid regions. This study proposes a model that combines cellular automaton (CA) and Markov; this model aids in predicting spatial changes in water and land resource availability. In this study, taking the Jingdian Irrigation District in China’s northwest arid region as an example, we used long-series monitoring data and a Landsat dataset to create a raster-weighted fusion of 18 indicators and quantitatively analyzed the carrying status of water and land resources from 1994 to 2018. The CA–Markov model was used to simulate the carrying status of water and land resources in 2018 and to perform accuracy correction. The validated CA–Markov model was used to predict water and land resource carrying status in 2026 and 2034. The results show (1) from 1994 to 2018, the area of “good carrying” zone increased by 10.42%, the area of “safe carrying” zone increased by 7%, and spatially rose in an arc from the town to the surrounding regions. The area of “critical carrying” zone remains almost unchanged. The area of “slight carrying” zone decreased by 5.18% and the area of “severe carrying” zone decreased by 11.99%. (2) Comparing the actual and predicted carrying state of water and land resources in 2018, it was found that the simulation accuracy of “good carrying”, “safe carrying”, “critical carrying”, “slight carrying”, and “severe carrying” reached 98.71%, 92.07%, 95.34%, 94.05%, and 93.73%, respectively. This indicates that the simulation results have high reliability and applicability. (3) The future medium and long-term carrying status of water and land resources are healthy, but this trend is gradually slowing. The “slight carrying” and “severe carrying” zones show the gradual spatial transition from land desertification to soil salinization.

Funder

Central Plains Science and Technology Innovation Leading Talent Support Program

Basic Public Welfare Research Program of Zhejiang Province

Major Science and Technology Program of Zhejiang Province

Henan Provincial Science and Technology Research Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3