Abstract
This study proposes a defect detection framework to improve the performance of deep learning-based detection models for ultra-high resolution (UHR) images generated by tunnel inspection systems. Most of the scanning technologies used in tunnel inspection systems generate UHR images. Defects in real-world images, on the other hand, are noticeably smaller than the image. These characteristics make simple preprocessing applications, such as downscaling, difficult due to information loss. Additionally, when a deep learning model is trained by the UHR images under the limited computational resource for training, problems may occur, including a reduction in object detection rate, unstable training, etc. To address these problems, we propose a framework that includes preprocessing and postprocessing of UHR images related to image patches rather than focusing on deep learning models. Furthermore, it includes a method for supplementing problems according to the format of the data annotation in the preprocessing process. When the proposed framework was applied to the UHR images of a tunnel, the performance of the deep learning-based defect detection model was improved by approximately 77.19 percentage points (pp). Because the proposed framework is for general UHR images, it can effectively recognize damage to general structures other than tunnels. Thus, it is necessary to verify the applicability of the defect detection framework under various conditions in future works.
Funder
Ministry of Land, Infrastructure and Transport of Korean government
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献