Deep Learning-Based Defect Detection Framework for Ultra High Resolution Images of Tunnels

Author:

Lee KisuORCID,Lee Sanghyo,Kim Ha YoungORCID

Abstract

This study proposes a defect detection framework to improve the performance of deep learning-based detection models for ultra-high resolution (UHR) images generated by tunnel inspection systems. Most of the scanning technologies used in tunnel inspection systems generate UHR images. Defects in real-world images, on the other hand, are noticeably smaller than the image. These characteristics make simple preprocessing applications, such as downscaling, difficult due to information loss. Additionally, when a deep learning model is trained by the UHR images under the limited computational resource for training, problems may occur, including a reduction in object detection rate, unstable training, etc. To address these problems, we propose a framework that includes preprocessing and postprocessing of UHR images related to image patches rather than focusing on deep learning models. Furthermore, it includes a method for supplementing problems according to the format of the data annotation in the preprocessing process. When the proposed framework was applied to the UHR images of a tunnel, the performance of the deep learning-based defect detection model was improved by approximately 77.19 percentage points (pp). Because the proposed framework is for general UHR images, it can effectively recognize damage to general structures other than tunnels. Thus, it is necessary to verify the applicability of the defect detection framework under various conditions in future works.

Funder

Ministry of Land, Infrastructure and Transport of Korean government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3