Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach

Author:

Pang Yean LingORCID,Quek Yen Ying,Lim StevenORCID,Shuit Siew HoongORCID

Abstract

Water pollution due to heavy metals has become a serious environmental concern due to their hazardous properties. Since conventional water remediation techniques are generally ineffective and non-environmentally friendly, phytoremediation has gained increasing attention from worldwide researchers and scientists due to its cost-effectiveness and environmental friendliness. Hence, this review first discussed soil and water remediations. Phytoremediation can be divided into five techniques to remove heavy metals from the polluted environment, namely, phytostabilization (phytosequestration), phytodegradation (phytotransformation), phytofiltration (rhizofiltration), phytoextraction (phytoaccumulation), and phytovolatilization. Four common floating aquatic plants (accumulator plants), such as duckweed (Lemna minor), water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and watermoss (Salvinia) were discussed in detail due to their great capability in absorbing the metal ions by their roots and further translocating the metal ions to the aerial parts. Furthermore, the parameter studies, such as optimum pH and temperature of the water, exposure duration, initial metal concentration, water salinity, and the addition of chelating agents, were evaluated. The absorption kinetics of the plants was discussed in detail. In short, phytoremediation is a promising green and sustainable water remediation approach. However, further research is necessary to enhance its practicability and performance at large-scale implementation.

Funder

Ministry of Education (MOE) Malaysia that provided the Fundamental Research

Kurita Asia Research

Kurita Water and Environment Foundation and Universiti Tunku Abdul Rahman (UTAR) Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3