Soil Slope Instability Mechanism and Treatment Measures under Rainfall—A Case Study of a Slope in Yunda Road

Author:

He Yuqiong,Li Bo,Du Xuan

Abstract

The unique geological conditions in Yunnan make it likely for landslides to occur there. For the purpose of exploring the soil slope instability mechanism, this paper takes a slope in Yunda Road, Chenggong, Kunming, as case study and establishes a slope model utilizing FLAC 3D coupled with Geo-studio software. The displacement, strain and deformation rate of the slope under the condition of rainfall are simulated, and the influence of rainfall and rainfall duration on rainfall infiltration is analyzed. The results indicated the following: (1) The effective stress on and shear strength of slope soil at the foot of the slope gradually decreased under rainfall, resulting in the loosening of the slope soil and slip at the foot of the slope. This affected the stability of the upper slope which, in turn, reduced the stability of the whole slope; (2) When the duration of rainfall reached 72 h, the slope stability coefficient Fs = 0.88, indicating a failure state. The increments of principal stress and shear stress at the foot of the slope were the largest, and the strain speed was the fastest, with the maximum values of principal stress and shear stress reaching 0.412 and 0.579, respectively; (3) The maximum total displacement was 2.177 m at the foot of the slope, the maximum vertical Z-axis displacement was 1.673 m in the negative direction of the Z-axis, and the soil at the foot of the slope was 0.6 m in the positive direction of the Z-axis. Our simulation results were consistent with the actual failure of the slope. After analyzing the slope mechanism and adopting targeted treatment measures, the slope was subjected to four rainfall cycles without any sign of landslips, indicating that the effect of our interventions was favorable.

Funder

National Natural Science Foundation of China Projects

Yunnan Province Talent Development Project

Project of the Transportation Department of Yunnan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference15 articles.

1. Inversion analysis of geotechnical parameters of Wangjiatai Landslide based on rainfall infiltration generalization model;Zhang;Sci. Technol. Eng.,2022

2. Influence of initial seepage field on rainfall infiltration characteristics and stability of slag slope;Li;Chin. J. Civil Environ. Eng.,2021

3. Different rainfall conditions of unsaturated seepage flow under the action of large soil field stability analysis;Hong;J. Min. Res. Dev.,2021

4. Slope stability under the condition of heavy rainfall and soil field course analysis;Kang;Highway,2019

5. Numerical simulation analysis of seepage flow and stability of slope soil under different rainfall intensities;Wu;Saf. Environ. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3