Effect of Zero Water Exchange Systems for Litopenaeus vannamei Using Sponge Biocarriers to Control Inorganic Nitrogen and Suspended Solids Simultaneously

Author:

Song ZhiwenORCID,Liu Chao,Luan Yazhi,Qi Yapeng,Xu Ailing

Abstract

The traditional shrimp farming mode, which mainly uses water exchange to dilute toxic nitrogenous compounds, not only brings risks of disease infections and outbreaks but also results in waste of water resources and has a negative impact on the environment. In this study, zero water exchange systems for Litopenaeus vannamei were constructed by using sponge biocarriers with precultured biofilms (SBBFs), and the effect of SBBFs on controlling inorganic nitrogen, suspended solids and on the performance of L. vannamei was determined. The experiment consisted of four treatments: (1) SBC (control, SB 5% (v/v) + aeration); (2) SBBF2.5a (SBBF 2.5% (v/v) + aeration); (3) SBBF5a (SBBF 5% (v/v) + aeration); and (4) SBBF5 (SBBF 5% (v/v)). The results showed that the concentrations of TAN and NO2−-N in the SBBF treatments were significantly lower than those in the SBC treatments, while the SBBF treatments registered higher NO3−-N concentrations. After the adsorbates were removed by regular cleaning to regenerate the adsorption capacity of the SBs, the turbidity was reduced by 47.8%~71.5%. The shrimp grown in the SBBF treatments exhibited a higher mean final weight, survival and productivity than those grown in the SBC treatments. This work found that the use of SBBFs can maintain the low levels of TAN, NO2−-N and suspended solids while improving the performance of the L. vannamei under the strict requirement of zero water exchange.

Funder

Key R&D projects of Shandong Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3