Printing, Debinding and Sintering of 15-5PH Stainless Steel Components by Fused Deposition Modeling Additive Manufacturing

Author:

Chang Gaoyuan1,Zhang Xiaoxun1,Ma Fang2,Zhang Cheng1,Xu Luyang1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

Metal FDM technology overcomes the problems of high cost, high energy consumption and high material requirements of traditional metal additive manufacturing by combining FDM and powder metallurgy and realizes the low-cost manufacturing of complex metal parts. In this work, 15-5PH stainless steel granules with a powder content of 90% and suitable for metal FDM were developed. The flowability and formability of the feedstock were investigated and the parts were printed. A two-step (solvent and thermal) debinding process is used to remove the binder from the green part. After being kept at 75 °C in cyclohexane for 24 h, the solvent debinding rate reached 98.7%. Following thermal debinding, the material’s weight decreased by slightly more than 10%. Sintering was conducted at 1300 °C, 1375 °C and 1390 °C in a hydrogen atmosphere. The results show that the shrinkage of the sintered components in the X-Y-Z direction remains quite consistent, with values ranging from 13.26% to 19.58% between 1300 °C and 1390 °C. After sintering at 1390 °C, the material exhibited a relative density of 95.83%, a hardness of 101.63 HRBW and a remarkable tensile strength of 770 MPa. This work realizes the production of metal parts using 15-5PH granules’ extrusion additive manufacturing, providing a method for the low-cost preparation of metal parts. And it provides a useful reference for the debinding and sintering process settings of metal FDM. In addition, it also enriches the selection range of materials for metal FDM.

Funder

Class III Peak Discipline of Shanghai-Materials Science and Engineering

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3