Highly Efficient SnIn4S8@ZnO Z-Scheme Heterojunction Photocatalyst for Methylene Blue Photodegradation

Author:

Luo Qiang1,Sun Changlin1,Zhao Juan2,Cai Qizhou3,Yao Shanshan4

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430048, China

2. School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430048, China

3. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

4. Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

Abstract

Building heterojunctions is a promising strategy for the achievement of highly efficient photocatalysis. Herein, a novel SnIn4S8@ZnO Z-scheme heterostructure with a tight contact interface was successfully constructed using a convenient two-step hydrothermal approach. The phase composition, morphology, specific surface area, as well as photophysical characteristics of SnIn4S8@ZnO were investigated through a series of characterization methods, respectively. Methylene blue (MB) was chosen as the target contaminant for photocatalytic degradation. In addition, the degradation process was fitted with pseudo-first-order kinetics. The as-prepared SnIn4S8@ZnO heterojunctions displayed excellent photocatalytic activities toward MB degradation. The optimized sample (ZS800), in which the molar ratio of ZnO to SnIn4S8 was 800, displayed the highest photodegradation efficiency toward MB (91%) after 20 min. Furthermore, the apparent rate constant of MB photodegradation using ZS800 (0.121 min−1) was 2.2 times that using ZnO (0.054 min−1). The improvement in photocatalytic activity could be ascribed to the efficient spatial separation of photoinduced charge carriers through a Z-scheme heterojunction with an intimate contact interface. The results in this paper bring a novel insight into constructing excellent ZnO-based photocatalytic systems for wastewater purification.

Funder

Open Foundation of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3