Numerical Simulation of Uniaxial Compressive Strength and Failure Characteristics of Non-Uniform Water-Bearing Sandstone

Author:

Song Mingwei1,Zhang Wenzhi12,Zou Youfeng12,Chen Junjie1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. Henan Engineering Research Center of Ecological Restoration and Construction Technology in Goaf Site, Jiaozuo 454000, China

Abstract

As complex and heterogeneous materials, the mechanical properties of rocks are still in need of further investigation regarding the mechanisms of the effects of water. In engineering projects such as goaf foundation treatment and ecological restoration, it is particularly important to describe the fracturing process of non-uniform water-containing sandstone media. The study utilized the theory of continuum mechanics to adopt an elastoplastic strain-softening constitutive relationship and develop a numerical model for analyzing the uniaxial compressive strength and failure characteristics of non-uniform water-containing sandstone. The results indicate that, compared with the reference rock sample, the shorter the capillary path of water entering the rock sample’s internal pores or the larger the contact area with water, the shorter the time required for the rock sample to be saturated. Increasing the water content causes a rapid decline in the rock sample’s elastic modulus and intensifies its brittleness. Group D2 and D3 samples exhibited a decrease in average peak strength to 70.4% and 62.1%, respectively, along with a corresponding decrease in the elastic modulus to 90.78% and 76.55%, indicating significant strain softening. While the failure mode of the rock sample remains consistent across different water contents, the homogeneity of failure shows significant variation. Increasing volumetric water content raises the likelihood of interconnecting cracks between rock samples, resulting in a progressive decline in macroscopic mechanical properties such as peak strength, critical strain, and elastic modulus. This research is significant in advancing the theory and construction technology for ecological restoration in goaf areas.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Universities of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3