The Growth and Non-Structural Carbohydrate Response Patterns of Siberian Elm (Ulmus pumila) under Salt Stress with Different Intensities and Durations

Author:

Jiang Peipei12,Yang Cheng3,Zhang Xuejie12,Tong Boqiang4,Xie Xiaoman4,Li Xianzhong5,Fan Shoujin12ORCID

Affiliation:

1. Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan 250014, China

2. Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China

3. College of Art, Qingdao University of Science and Technology, Qingdao 266061, China

4. Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan 250102, China

5. Baiwa Forest Farm of Jinxiang County, Jining 272202, China

Abstract

(1) Background: Soil salinity is one of the major abiotic stresses that limits plant growth and production. However, the response patterns of plant growth and carbon metabolism to salt stress are still unclear. (2) Methods: We measured the relative growth rate, non-structural carbohydrate (NSC) concentrations and pool size across organs, the leaf mass area (LMA), root-to-shoot ratio, midday leaf water potential (Ψmd), and photosynthetic characteristics of elm seedlings planted in the field under different salt stress intensities and durations. (3) Results: Salt stress can reduce the photosynthesis rate, stomatal conductance, and Ψmd and inhibit the growth of elm species. LMA increased with the degree and duration of salt stress, indicating an increase in leaf carbon investment to resist salt stress. The root-to-shoot ratio decreased under salt stress to reduce salt absorption by the roots. In the early stage of stress, the concentrations of starch and total NSCs in all organs increased to improve stress resistance and the survival of plants. In the late stage of stress, the concentration of NSCs in the root decreased, which could restrict root growth and water uptake. The relationships between NSC concentration and growth in different organs were contrasting. Meanwhile, the pool size of NSCs had a more significant impact on growth than their concentration. Moreover, the pool size of NSCs in below-ground organs is more closely related to growth than that of above-ground organs. (4) Conclusions: Our research elucidates the carbon allocation mechanism across organs under different salt stress intensities and durations, providing theoretical support for understanding the relationship between tree growth and carbon storage under salt stress.

Funder

the Shandong Provincial Agricultural Elite Varieties Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3