A Stacking Ensemble Model of Various Machine Learning Models for Daily Runoff Forecasting

Author:

Lu Mingshen12,Hou Qinyao12,Qin Shujing12ORCID,Zhou Lihao12,Hua Dong3,Wang Xiaoxia14,Cheng Lei12

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

2. Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan 430072, China

3. Information Centre, Ministry of Water Resources, Beijing 100053, China

4. Department of Water Resources of Hainan Province, Haikou 570100, China

Abstract

Improving the accuracy and stability of daily runoff prediction is crucial for effective water resource management and flood control. This study proposed a novel stacking ensemble learning model based on attention mechanism for the daily runoff prediction. The proposed model has a two-layer structure with the base model and the meta model. Three machine learning models, namely random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGB) are used as the base models. The attention mechanism is used as the meta model to integrate the output of the base model to obtain predictions. The proposed model is applied to predict the daily inflow to Fuchun River Reservoir in the Qiantang River basin. The results show that the proposed model outperforms the base models and other ensemble models in terms of prediction accuracy. Compared with the XGB and weighted averaging ensemble (WAE) models, the proposed model has a 10.22% and 8.54% increase in Nash–Sutcliffe efficiency (NSE), an 18.52% and 16.38% reduction in root mean square error (RMSE), a 28.17% and 18.66% reduction in mean absolute error (MAE), and a 4.54% and 4.19% increase in correlation coefficient (r). The proposed model significantly outperforms the base model and simple stacking model indicated by both the Friedman test and the Nemenyi test. Thus, the proposed model can produce reasonable and accurate prediction of the reservoir inflow, which is of great strategic significance and application value in formulating the rational allocation and optimal operation of water resources and improving the breadth and depth of hydrological forecasting integrated services.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3