Information in Streetscapes—Research on Visual Perception Information Quantity of Street Space Based on Information Entropy and Machine Learning

Author:

Liu Ziyi,Ma Xinyao,Hu Lihui,Lu Shan,Ye Xiaomin,You Shuhang,Tan Zhe,Li Xin

Abstract

Urban street space is a critical reflection of a city’s vitality and image and a critical component of urban planning. While visual perceptual information about an urban street space can reflect the composition of place elements and spatial relationships, it lacks a unified and comprehensive quantification system. It is frequently presented in the form of element proportions without accounting for realistic factors, such as occlusion, light and shadow, and materials, making it difficult for the data to accurately describe the complex information found in real scenes. The conclusions of related studies are insufficiently focused to serve as a guide for designing solutions, remaining merely theoretical paradigms. As such, this study employed semantic segmentation and information entropy models to generate four visual perceptual information quantity (VPIQ) measures of street space: (1) form; (2) line; (3) texture; and (4) color. Then, at the macro level, the streetscape coefficient of variation (SCV) and K-means cluster entropy (HCK) were proposed to quantify the street’s spatial variation characteristics based on VPIQ. Additionally, we used geographically weighted regression (GWR) to investigate the relationship between VPIQ and street elements at the meso level as well as its practical application. This method can accurately and objectively describe and detect the current state of street spaces, assisting urban planners and decision-makers in making decisions about planning policies, urban regeneration schemes, and how to manage the street environment.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3