Classification of Floods in Europe and North America with Focus on Compound Events

Author:

Brazda Steven,Šraj MojcaORCID,Bezak NejcORCID

Abstract

Compound events occur when multiple drivers or hazards occur in the same region or on the same time scale, hence amplifying their impacts. Compound events can cause large economic damage or endanger human lives. Thus, a better understanding of the characteristics of these events is needed in order to protect human lives. This study investigates the drivers and characteristics of floods in Europe and North America from the compound event perspective. More than 100 catchments across Europe and North America were selected as case study examples in order to investigate characteristics of floods during a 1979–2019 period. Air temperature, precipitation, snow thickness, snow liquid water equivalent, wind speed, vapour pressure, and soil moisture content were used as potential drivers. Annual maximum floods were classified into several flood types. Predefined flood types were snowmelt floods, rain-on-snow floods, short precipitation floods and long precipitation floods that were further classified into two sub-categories (i.e., wet and dry initial conditions). The results of this study show that snowmelt floods were often the dominant flood type in the selected catchments, especially at higher latitudes. Moreover, snow-related floods were slightly less frequent for high altitude catchments compared to low- and medium-elevation catchments. These high-altitude areas often experience intense summer rainstorms that generate the highest annual discharges. On the other hand, snowmelt-driven floods were the predominant flood type for the lower elevation catchments. Moreover, wet initial conditions were more frequent than the dry initial conditions, indicating the importance of the soil moisture for flood generation. Hence, these findings can be used for flood risk management and modelling.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3