A Trajectory Big Data Storage Model Incorporating Partitioning and Spatio-Temporal Multidimensional Hierarchical Organization

Author:

Yao Zhixin,Zhang Jianqin,Li Taizeng,Ding Ying

Abstract

Trajectory big data is suitable for distributed storage retrieval due to its fast update speed and huge data volume, but currently there are problems such as hot data writing, storage skew, high I/O overhead and slow retrieval speed. In order to solve the above problems, this paper proposes a trajectory big data model that incorporates data partitioning and spatio-temporal multi-perspective hierarchical organization. At the spatial level, the model partitions the trajectory data based on the Hilbert curve and combines the pre-partitioning mechanism to solve the problems of hot writing and storage skewing of the distributed database HBase; at the temporal level, the model takes days as the organizational unit, finely encodes them into a minute system and then fuses the data partitioning to build spatio-temporal hybrid encoding to hierarchically organize the trajectory data and solve the problems of efficient storage and retrieval of trajectory data. The experimental results show that the model can effectively improve the storage and retrieval speed of trajectory big data under different orders of magnitude, while ensuring relatively stable writing and query speed, which can provide an efficient data model for trajectory big data mining and analysis.

Funder

the Beijing Natural Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference38 articles.

1. Zhou, Y., Chen, Q., Shan, B., Jiang, F., and Pang, Y. (August, January 28). A Distributed Storage Strategy for Trajectory Data Based On Nosql Database. Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.

2. A Survey of Spatio-Temporal Big Data Indexing Methods in Distributed Environment;Tian;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2022

3. Influence of pre-processing strategies on the performance of ML classifiers exploiting TF-IDF and BOW features;Pimpalkar;ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J.,2020

4. Using Hilbert curve and Cassandra technology to realize spatiotemporal big data storage and indexing;Cao;J. Wuhan Univ.,2021

5. Geohash coding organization and efficient range query of large-scale trajectory data;Xiang;J. Wuhan Univ.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3