An Automatic Generalization Method for a Dense Road Network Area Considering Spatial Structural Features as Constraints

Author:

Wu PengdaORCID,Yin YongORCID,Wu Chuangqi,Bai Xiaofei,Zhang ChunxiaoORCID,Dai Zhaoxin

Abstract

Road networks are the skeletal elements of topographic maps at different scales, and road selection is a prerequisite for implementing continuous multiscale spatial representations of road networks. The mesh-based approach is a common, advanced and powerful method for road selection in dense road areas in which small meshes are removed and road segments with the least importance in each mesh are eliminated. However, small meshes in a map can be classified into two types: aggregated small meshes and isolated small meshes. The number of the former is small, and that of the latter is large. Existing methods are generally applicable for the latter, and some or even most spatial characteristics will be lost when they are applied to the former; as a result, the road selection quality will be affected. Therefore, as a supplement to the mesh-based selection method, this paper proposed an automatic generalization method of dense road network areas (areas formed by aggregated small meshes) considering spatial structural features as constraints. First, the aggregated areas of small meshes were identified based on the number of adjoining small meshes, and the boundaries of aggregated areas are extracted and used as hard constraints during mesh elimination. Second, the starting meshes were redefined by simultaneously considering the edge features and mesh density of small meshes, and an ordinal elimination algorithm was proposed to eliminate the meshes in the stroke connection direction. Third, road selection was implemented by identifying the starting meshes and sequentially processing the related mesh pairs. This iterative process continued until all mesh densities of the newly formed meshes are beyond the threshold or the problem becomes a simple elimination problem involving two adjoining small meshes or one isolated small mesh. Finally, a 1:10,000 standard topographic road map for Jiangsu Province, China, was used for validation. The experimental results showed that in the aggregated areas with two small meshes, 31% of the areas obtained the same selection results by using the mesh-based method and the proposed method, and the remaining 69% obtained a more compact result with the proposed method. Moreover, for all aggregated areas with more than two small meshes, the spatial distribution structure of small meshes was preserved better by the proposed method.

Funder

National Natural Science Foundation of China

Basal Research Fund of CASM

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3