Robust Watermarking Scheme for Vector Geographic Data Based on the Ratio Invariance of DWT–CSVD Coefficients

Author:

Qu Chengyi,Xi Xu,Du Jinglong,Wu Tong

Abstract

Traditional frequency-domain watermarking algorithms for vector geographic data suffer from disadvantages such as the random watermark embedding position, unpredictable embedding strength, and difficulty in resisting multiple attacks at the same time. To address these problems, we propose a novel watermarking algorithm based on the geometric invariance of the ratios of discrete wavelet transform (DWT) and complex singular value decomposition (CSVD) coefficients, which embeds the watermark information in a new embedding domain. The proposed scheme first extracts feature points from the original vector geographic data using the Douglas–Peucker algorithm, and then constructs a complex sequence based on the feature points set. The two-level DWT is then performed on the complex sequence to obtain the low frequency coefficients (L2) and high frequency coefficients (H2). On this premise, the CSVD algorithm is utilized to calculate the singular values of L2 and H2, and the ratio of the singular values of L2 and H2 is acquired as the watermark embedding domain. During the watermark embedding process, a new watermark sequence is created by the fusion of the original watermark index value and bits value to improve the recognition of the watermark information, and the decimal part at different positions of the ratio is altered by the new watermark sequence to control the watermark embedding strength. The experimental results show that the proposed watermarking algorithm is not only robust to common attacks such as geometric, cropping, simplification, and coordinate point editing, but also can extract watermark images with a high probability under random multiple attacks.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3