Online Pre-Treatment of Thermomechanical Pulp with Emulsified Maleated Polypropylene for Processing of Extruded Thermoplastic Composites

Author:

Schirp ArneORCID,Schirp ClaudiaORCID

Abstract

The effectiveness of maleated polypropylene (MAPP) in emulsified form for the pre-treatment of thermo-mechanical pulp (TMP) before extrusion with polypropylene fibres was evaluated. MAPP in pellet form, which was applied during the compounding step, served as a benchmark. In addition, commercial softwood flour was included as a reference. The influence of the temperature during the defibration process and the presence or absence of the coupling agent on composite performance were evaluated. Composites were processed with a high wood content of 70 wt.%, which is common for extruded profiles. It was found that TMP based on Robinia (Robinia pseudoacacia L.) conferred higher strength properties to the composites compared to TMP based on Scots pine (Pinus sylvestris L.), which was attributed to the higher length/diameter ratio of fibres in Robinia. However, under the conditions of this study, strength properties were superior and water uptake and swelling were reduced when wood flour was used instead of TMP. On the other hand, in many formulations, larger improvements in flexural and tensile strength due to MAPP were found for the TMP-based composites compared to the wood flour-based composites. This could be due to the larger surface/volume ratio for TMP compared to wood flour and more efficient stress transfer from fibres to the matrix. Results from X-ray photoelectron spectroscopy (XPS) showed that TMP surfaces were more hydrophobic than wood flour due to coverage with lignin, which reduced the effectiveness of MAPP. Esterification between the emulsified MAPP and fibre surfaces was determined using Fourier-Transform Infrared (FTIR) spectroscopy, but some non-activated maleic anhydride remained. Under the conditions of this study, MAPP added during compounding provided better performance compared to MAPP which included a non-ionic emulsifier and which was added during the refining process. Lower temperature (150 °C) during defibration was shown to be beneficial for the strength properties of composites compared to high temperature (180 °C) when MAPP was included in the formulations.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Reference71 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3