Author:
Wang Xiaoli,Zhang He,Wang Yalin,Yang Shaoming
Abstract
Online prediction of key parameters (e.g., process indices) is essential in many industrial processes because online measurement is not available. Data-based modeling is widely used for parameter prediction. However, model mismatch usually occurs owing to the variation of the feed properties, which changes the process dynamics. The current neural network online prediction models usually use fixed activation functions, and it is not easy to perform dynamic modification. Therefore, a few methods are proposed here. Firstly, an extreme learning machine (ELM)-based single-layer feedforward neural network with activation-function learning (AFL–SLFN) is proposed. The activation functions of the ELM are adjusted to enhance the ELM network structure and accuracy. Then, a hybrid model with adaptive weights is established by using the AFL–SLFN as a sub-model, which improves the prediction accuracy. To track the process dynamics and maintain the generalization ability of the model, a multiscale model-modification strategy is proposed. Here, small-, medium-, and large-scale modification is performed in accordance with the degree and the causes of the decrease in model accuracy. In the small-scale modification, an improved just-in-time local modeling method is used to update the parameters of the hybrid model. In the medium-scale modification, an improved elementary effect (EE)-based Morris pruning method is proposed for optimizing the sub-model structure. Remodeling is adopted in the large-scale modification. Finally, a simulation using industrial process data for tailings grade prediction in a flotation process reveals that the proposed method has better performance than some state-of-the-art methods. The proposed method can achieve rapid online training and allows optimization of the model parameters and structure for improving the model accuracy.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献