Evaluating the Robustness of Deep Learning Models against Adversarial Attacks: An Analysis with FGSM, PGD and CW

Author:

Villegas-Ch William1ORCID,Jaramillo-Alcázar Angel1ORCID,Luján-Mora Sergio2ORCID

Affiliation:

1. Escuela de Ingeniería en Ciberseguridad, Facultad de Ingenierías Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador

2. Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, 03690 Alicante, Spain

Abstract

This study evaluated the generation of adversarial examples and the subsequent robustness of an image classification model. The attacks were performed using the Fast Gradient Sign method, the Projected Gradient Descent method, and the Carlini and Wagner attack to perturb the original images and analyze their impact on the model’s classification accuracy. Additionally, image manipulation techniques were investigated as defensive measures against adversarial attacks. The results highlighted the model’s vulnerability to conflicting examples: the Fast Gradient Signed Method effectively altered the original classifications, while the Carlini and Wagner method proved less effective. Promising approaches such as noise reduction, image compression, and Gaussian blurring were presented as effective countermeasures. These findings underscore the importance of addressing the vulnerability of machine learning models and the need to develop robust defenses against adversarial examples. This article emphasizes the urgency of addressing the threat posed by harmful standards in machine learning models, highlighting the relevance of implementing effective countermeasures and image manipulation techniques to mitigate the effects of adversarial attacks. These efforts are crucial to safeguarding model integrity and trust in an environment marked by constantly evolving hostile threats. An average 25% decrease in accuracy was observed for the VGG16 model when exposed to the Fast Gradient Signed Method and Projected Gradient Descent attacks, and an even more significant 35% decrease with the Carlini and Wagner method.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3