Author:
Reilly Erin R.,Abajorga Milky K.,Kiser Cory,Mohd Redzuan Nurul Humaira,Haidar Zein,Adams Lily E.,Diaz Randy,Pinzon Juliana A.,Hudson André O.,Black Lindsay W.,Hsia Ru-Ching,Weintraub Susan T.,Thomas Julie A.
Abstract
The head of Salmonella virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the Salmonella cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease. In this study, we present the characterization of SPN3US prohead protease mutants using transmission electron microscopy and mass spectrometry. In the absence of the prohead protease, SPN3US head formation was severely impeded and proheads accumulated on the Salmonella inner membrane. This impediment is indicative of proteolysis being necessary for the release and subsequent DNA packaging of proheads in the wild-type phage. Proteomic analyses of gp245- proheads that the normal proteolytic processing of head proteins had not occurred. Assays of a recombinant, truncated form of the protease found it was active, leading us to hypothesize that the C-terminal propeptide has a role in targeting the protease into the prohead core. Our findings provide new evidence regarding the essential role of proteolysis for correct head assembly in this remarkable parasite.
Funder
National Institute of General Medical Sciences
National Center for Research Resources
Subject
Virology,Infectious Diseases
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献