Silicates from Lherzolites in the South-Eastern Part of the Kempirsay Massif as the Source for Giant Chromitite Deposits (the Southern Urals, Kazakhstan)

Author:

Saveliev Dmitri E.,Makatov Darkhan K.,Rakhimov Ildar R.ORCID,Gataullin Ruslan A.,Shilovskikh Vladimir V.ORCID

Abstract

We provide results of a comprehensive mineralogical and microstructural study of relict lherzolites of the main ore field and fresh rocks from a deep structural borehole drilled in the south-eastern part of the Kempirsay massif. Olivine and orthopyroxene from lherzolites contain numerous pieces of evidence of material redistribution at different scales caused mainly by solid-state processes, such as plastic flow of mantle, syntectonic recrystallization, and annealing. The results of deformation-induced processes at the submicron scale are recorded by optical and electronic microscopy. In olivine, the plastic deformation caused segregation of impurities at structural defects. As a result, abundant tiny rods of newly formed Cr-spinels occurred inside its grains. Moreover, in enstatite, deformation caused partial or complete chemical decomposition with exsolution of diopside, pargasite and spinel lamellae up to the formation of a “fibrous” structure. In other cases, it provided partial or complete recrystallization to form new phases of enstatite-2, forsterite, diopside, pargasite, and spinel. Petrographic observations are validated by geochemical data, i.e., regularly decreasing concentrations of minor elements in neoblasts compared to large grains (porphyroclasts). Further redistribution of spinel grains with the formation of chromitite bodies is witnessed by their permanent association with the most mobile phase of the upper mantle, i.e., olivine, which is the only mineral that remains stable under the intense plastic flow. An increased concentration of Cr-spinel grains during formation of massive chromitites could appear under conditions close to pressure sintering, as evidenced by stressed textures of ores and an increased grain size compared to disseminated chromitites. The formation of unique chromitite deposits is associated with integration of numerous disparate podiform bodies into “ore bunches” due to the tectonic impact in the shear-compression regime. This was most likely associated with transition of the rifting (spreading) regime to that of the upper mantle of the fore-arc basin.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3