Biodiversity-Centric Habitat Networks for Green Infrastructure Planning: A Case Study in Northern Italy

Author:

Lami Francesco12ORCID,Boscutti Francesco13ORCID,Peccol Elisabetta1ORCID,Piani Lucia1ORCID,De Luca Matteo4,Zandigiacomo Pietro1ORCID,Sigura Maurizia1ORCID

Affiliation:

1. Di4A-Department of Agricultural Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy

2. DISTAL-Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy

3. NBFC National Biodiversity Future Center, 90133 Palermo, Italy

4. For-Nature S.r.l., Via Ciconi 26, 33100 Udine, Italy

Abstract

Green infrastructure (GI) networks comprising multiple natural and artificial habitats are important tools for the management of ecosystem services. However, even though ecosystem services are deeply linked with the state of biodiversity, many approaches to GI network planning do not explicitly consider the ecological needs of biotic communities, which are often threatened by anthropic activities even in presence of protected areas. Here, to contribute in fill this gap, we describe an easy-to-apply, biodiversity-centric approach to model an ecological network as a backbone for a GI network, based on the ecological needs of a range of representative species. For each species, ideal habitats (nodes) were identified, and crossing costs were assigned to other habitat types depending on their compatibility with the species ecology. Corridors linking the nodes were then mapped, minimizing overall habitat crossing costs. We applied the method to the Isonzo–Vipacco river area in Northern Italy, highlighting a potential ecological network where nodes and corridors occupied 27% and 11.8% of the study area, respectively. The prospective of its conflicts with anthropic activities and possible solutions for its implementation was also discussed. Our method could be applied to a variety of situations and geographic contexts, being equally useful for supporting the protection of entire biocenoses or of specific sensitive species, as well as enhancing the ecosystem services they provide.

Funder

Regione Friuli Venezia Giulia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3