Affiliation:
1. Department of Mechanical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
Abstract
Friction stir welding (FSW) has gained increasing prominence in the realm of metal–plastic hybrid joints, yet its long-term sustainability remains a subject of uncertainty. This research investigates the sustainability aspect of FSW, positioning it against conventional techniques like adhesive bonding (AB) and self-piercing riveting (SPR). A comprehensive evaluation framework encompassing environmental, social, economic, and physical factors was employed, through which specified criteria were applied to select pertinent sustainability indicators across all dimensions to ensure a thorough assessment. In this study, two advanced multi-criteria decision-making methods (MCDM) were deployed for data normalization and aggregation. Sensitivity analysis was conducted to examine the robustness of the results. The outcomes yielded a sustainability rating system, facilitating a direct and insightful comparison with traditional methods. Based on the results of this study, SPR outperforms both FSW and AB in terms of overall sustainability with comparative average sustainability scores of 75.3%, 54.2%, and 35.3%, respectively. This study not only sheds light on the current state of FSW sustainability but also provides a valuable benchmark for decision-makers in selecting environmentally conscious methods for metal–plastic hybrid joints.
Funder
American University of Sharjah