Metamaterial Inspired Varactor-Tuned Antenna with Frequency Reconfigurability and Pattern Diversity

Author:

Zhang Jiahao1ORCID,Wang Buyun2ORCID,Yan Sen2ORCID,Li Wei1,Vandenbosch Guy A. E.3

Affiliation:

1. National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430030, China

2. Faculty of Electronics and Information, Xi’an Jiaotong University, Xi’an 710049, China

3. ESAT-WaveCore Research Division, Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium

Abstract

A metamaterial-inspired varactor-tuned antenna with frequency reconfigurability and pattern diversity is designed. Two different versions of a reconfigurable structure are integrated into a single antenna to excite two different orthogonal patterns, which realizes pattern diversity for MIMO applications. The outer annular Composite Right-/Left-Handed Transmission Line (CRLH-TL) works at the 1 mode and provides a broadside pattern, and the inner circular radiator loaded with split ring resonators (SRR) operates at the 0 mode and radiates an omnidirectional pattern, which realizes pattern diversity. By using surface-mounted varactors, the operating frequencies for the two radiation patterns can be tuned over a wide frequency range, from 1.7 GHz to 2.2 GHz, covering the 1.71–2.17 GHz LTE band, and a low mutual coupling between the two radiators is achieved. The antenna has also been prototyped. The measured results are in good agreement with the simulation results, verifying the proposed concept. The dual-mode MIMO system equipped with the proposed antenna elements is discussed within the context of a 3-D channel model, and it shows a superior array compactness and spectral efficiency (SE) performance compared to scenarios with single-mode elements.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

National Fund for Distinguished Young Scholars

Young Elite Scientists Sponsorship Program

Foundation of National Key Laboratory of Science and Technology on Electromagnetic Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3