Local Meteoric Water Line of Northern Chile (18° S–30° S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation

Author:

Boschetti ,Cifuentes ,Iacumin ,Selmo

Abstract

In this study, a revision of the previously published data on hydrogen (2H/1H) and oxygen (18O/16O) stable isotope ratio of precipitation in northern Chile is presented. Using the amount-weighted mean data and the combined standard deviation (related to both the weighted mean calculation and the spectrometric measurement), the equation of the local meteoric line calculated by error-in-variables regression is as follows: Northern Chile EIV-LMWL: δ2H = [(7.93 ± 0.15) δ18O] + [12.3 ± 2.1]. The slope is similar to that obtained by ordinary least square regression or other types of regression methods, whether weighted or not (e.g., reduced major axis or major axis) by the amount of precipitation. However, the error-in-variables regression is more accurate and suitable than ordinary least square regression (and other types of regression models) where statistical assumptions (i.e., no measurement errors in the x-axis) are violated. A generalized interval of δ2H = ±13.1‰ is also proposed to be used with the local meteoric line. This combines the confidence and prediction intervals around the regression line and appears to be a valid tool for distinguishing outliers or water samples with an isotope composition significantly different from local precipitation. The applicative examples for the Pampa del Tamarugal aquifer system, snow samples and the local geothermal waters are discussed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference81 articles.

1. Numerical Ecology;Legendre,2012

2. Atmospheric waters;Yurtsever,1981

3. Statistical Treatment of Data on Environmental Isotopes in Precipitation—Technical Report Series n° 331,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3