Soil Water Dynamics in a Rainfed Mediterranean Agricultural System

Author:

Jiménez-de-Santiago ORCID,Lidón ,Bosch-Serra ORCID

Abstract

Rainfed Mediterranean agriculture is characterized by low water input and by soil water content below its field capacity during most of the year. However, erratic rainfall distribution can lead to deep drainage. The understanding of soil-water dynamics is essential to prevent collateral impacts in subsuperficial waters by leached pollutants and to implement suitable soil management (e.g., agronomic measures to avoid nitrate leaching). Soil water dynamics during two fallow years and three barley crop seasons was evaluated using the Leaching estimation and chemistry model in a semiarid Mediterranean agricultural system. Model calibration was carried out using soil moisture data from disturbed soil samples and from capacitance probes installed at three depths. Drainage of water from the plots occurred in the fall and winter periods. The yearly low drainage values obtained (<15 mm) indicate that the estimated annual nitrate leaching is also small, regardless of the nature of the fertilizer applied (slurries or minerals). In fallow periods, there is a water recharge in the soil, which does not occur under barley cropping. However, annual fallow included in a winter cereal rotation, high nitrate residual soil concentrations (~80 mg NO3−-N L−1) and a period with substantial autumn-winter rains (70–90 mm) can enhance nitrate leaching, despite the semiarid climate.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. Council Directive 91/676/EEC, of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources;Off. J. Eur. Communities,1991

2. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture,2018

3. Blue Water in Europe: Estimates of Current and Future Availability and Analysis of Uncertainty

4. Managing water in rainfed agriculture—The need for a paradigm shift

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3