Phosphate Removal from Nursery Runoff Water Using an Iron-Based Remediation System

Author:

Ordonez Hinz Francisca,Albano Joseph P.,Wilson P. Chris

Abstract

Phosphorous (P) losses from containerized plant production nurseries can be significant due to the low nutrient retention capacities of the media components. As environmental regulators establish, refine, and enforce nutrient criteria, effective methods are needed to reduce amounts of P in runoff and drainage water. This study investigated the use of a small scale flow-through ferrous iron (Fe(II))-based remediation system for chemically precipitating P. This system consisted of four inter-connected tanks, with the first two maintained under anaerobic conditions and the last two maintained under aerobic conditions. FeSO4 was introduced into the first of the aerobic tanks at different rates to achieve Fe:P ratios of 0, 9.0, 16.3, and 21.2. Water samples were collected from the systems, and P removal was monitored by ion chromatography. Phosphorus removal efficiencies of 78, 95, and 99% were observed for each respective treatment, indicating great potential for this conceptual system at Fe:P dosing ratios ≥16.3 and phosphorus concentrations between 3 and 5 mg/L. This type of system may especially be useful for nurseries with space limitations.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3