Effects of Intermittent and Chronic Hypoxia on Fish Size and Nutrient Metabolism in Tiger Puffer (Takifugu rubripes)

Author:

Ma Qiang1ORCID,Zhang Renxiao12,Wei Yuliang13ORCID,Liang Mengqing13,Xu Houguo13ORCID

Affiliation:

1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

2. Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266003, China

3. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China

Abstract

Intermittent and chronic hypoxia are common stresses to marine fish, but the different responses of fish to intermittent and chronic hypoxia have not been well-known. In this study, tiger puffers were farmed in normoxia conditions (NO, 6.5 ± 0.5 mg/L), intermittent hypoxia (IH, 6.5 ± 0.5 mg/L in the day and 3.5 ± 0.5 mg/L in the night), or choric hypoxia (CH, 3.5 ± 0.5 mg/L) conditions for 4 weeks, after which the growth, nutrient metabolism and three hifα isoforms expression were measured. Both intermittent and chronic hypoxia decreased the fish growth and visceral weight but increased the feed conversion ratio and blood hemoglobin content. Chronic hypoxia but not intermittent hypoxia promoted protein synthesis and whole-fish protein content by activating mtor gene expression and promoted the glycolysis pathway by activating gene expression of hif1α and hif2α. Intermittent hypoxia but not chronic hypoxia decreased the hepatic lipid synthesis by inhibiting fasn and srebf1 gene expression. Meanwhile, intermittent hypoxia reduced the monounsaturated fatty acid content but increased the n-3 polyunsaturated fatty acids percentage. The results of this study clarified the adaptive mechanism of tiger puffer to intermittent and chronic hypoxia, which provides important information about mechanisms of hypoxia adaption in fish.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Central Public-interest Scientific Institution Basal Research Fund

China Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3