Affiliation:
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
2. Yuelushan Laboratory, Changsha 410128, China
3. Hunan Agriculture Research System, Changsha 410128, China
Abstract
The gut microbiota is crucial for maintaining the host’s intestinal homeostasis and metabolism. This study investigated the effects of fecal microbiota transplantation (FMT) from Ningxiang pigs on the growth performance, fecal microbiota, and serum metabolites of the same-old DLY pigs. The results indicated that the average daily gain of FMT pigs was significantly greater than that of the control (CON) group. Compared to the CON group, the FMT group significantly improved the apparent digestibility of crude fiber, crude ash, gross energy, and calcium of the pigs. The analysis of serum antioxidant status revealed that the activities of total superoxide dismutase and catalase in the serum of pigs in the FMT group were significantly elevated, whereas the level of malondialdehyde was significantly reduced. Furthermore, 16S rRNA sequencing analysis revealed that the Ningxiang pig-derived microbiota altered the fecal microbiota structure and modulated the diversity of the gut microbiota in the DLY pigs. Untargeted LC–MS metabolomics demonstrated that pigs in the FMT group exhibited distinct metabolomic profiles compared to those in the CON group. Significant changes were observed in key metabolites involved in amino acid, lipid, and carbohydrate metabolism. Additionally, a correlation analysis between serum differential metabolites and the gut microbiota revealed that the relative abundance of Lachnospiraceae_NK4A136_group and Corynebacterium was highly correlated with lipid compounds. In conclusion, Ningxiang pig-derived microbiota can alleviate oxidative stress and enhance growth performance in DLY pigs by modulating their gut microbiota and metabolic features.
Funder
National Natural Science Foundation of China