Mutual Inductance Estimation Using an ANN for Inductive Power Transfer in EV Charging Applications

Author:

Abrantes Gonçalo C.1ORCID,Costa Valter S.12ORCID,Perdigão Marina S.23ORCID,Cruz Sérgio12ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Coimbra, Polo 2, 3030-290 Coimbra, Portugal

2. Instituto de Telecomunicações, University of Coimbra, Polo 2, 3030-290 Coimbra, Portugal

3. Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes-Quinta da Nora, 3030-199 Coimbra, Portugal

Abstract

In the context of inductive power transfer (IPT) for electric vehicle (EV) charging, the precise determination of the mutual inductance between the magnetic pads is of critical importance. The value of this inductance varies depending on the EV positioning, affecting the power transfer capability. Therefore, the precise determination of its value yields various advantages, particularly by contributing to the optimization of the charging process of the EV batteries, since it offers the possibility of adjusting the position of the vehicle depending on the level of misalignment. Within this framework, algorithms grounded in artificial intelligence (AI) techniques emerge as promising solutions. This research work revolves around the estimation of the mutual inductance in a wireless inductive power transfer system using a resonant converter topology, implemented in MATLAB/Simulink® R2021b. The system output was developed to emulate the behavior of a battery charger. To estimate this parameter, an artificial neural network (ANN) was developed. Given the characteristics of the system, the features were chosen in a way that they could provide a clear indication to the ANN if the vehicle position changed, independently of the charging power. In the pursuit of creating a robust AI model, the training dataset contained approximately 1% of the available data. Upon the analysis of the results, it was verified that the largest estimation error observed was around 3%, occurring at the lowest charging power considered. Hence, it can be inferred that the proposed ANN exhibits the capability to accurately estimate the value of mutual inductance in this type of system.

Funder

Portuguese Foundation for Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3