Affiliation:
1. National Research Council, Institute of Sciences and Technologies for Sustainable Energy and Mobility (CNR-STEMS), P. le V. Tecchio 80, 80125 Napoli, Italy
Abstract
The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO2). The development of iron-based systems for CO2 capture and storage could effectively contribute to reducing CO2 emissions. A wide set of different iron oxides, such as hematite (Fe2O3), magnetite (Fe3O4), and wüstite (Fe(1−y)O) could in fact be employed for CO2 capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO2 capture, starting from Fe2O3, a reducing agent such as hydrogen (H2) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H2 and CO.
Funder
European Union—NextGenerationEU
National Recovery and Resilience Plan
Mission 04 Component 2 Investment 3.1
Project “ECCSELLENT—Development of ECCSEL-R.I.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献