Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size

Author:

Liu Jie1ORCID,Zhu Yilin2,Liang Quanwei3,Xiao Yexiang2ORCID,Liu Zhengshu4,Li Haijun1,Ye Jian4,Yang Nianhao1,Deng Haifeng1,Du Qingpin1

Affiliation:

1. China Three Gorges Construction Engineering Corporation, Chengdu 610095, China

2. State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3. Dongfang Electric Machinery Co., Ltd., Deyang 618000, China

4. China Three Gorges Tibet Energy Investment Corporation, Chengdu 610095, China

Abstract

The sediment erosion of Pelton turbine components is a major challenge in the operation and development of high-head water resources, especially in mountainous areas with high sediment yield. In this paper, a study using numerical simulation was conducted with different sediment particle sizes in the fine sand range. And the erosion mechanism of the Pelton turbine injector was analyzed. The Eulerian Lagrange method was adopted to simulate the gas–liquid–solid flow. The Mansouri’s model was applied to estimate the injector erosion. The predicted erosion results were in accord with field erosion photographs. In particular, the asymmetrical erosion distribution on the needle surface was physically reproduced. With the sediment particle size increasing from 0.05 mm, the needle erosion rate decreased, while the nozzle casing erosion rate increased dramatically. In order to clarify this tendency, the characteristics of the three-phase flow were analyzed. Interestingly, the results show that with the rise in particle size, the separation of particles and water streamlines became more serious in the contraction section of the nozzle mouth. Consequently, it caused the enhancement of erosion of the nozzle surfaces and weakened the erosion of the needle surfaces. Significant engineering insights may be provided for weakening Pelton injector erosion with needle guides in the current study.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3