Generating Synthetic Electricity Load Time Series at District Scale Using Probabilistic Forecasts

Author:

Richter Lucas1,Bender Tom1ORCID,Lenk Steve1ORCID,Bretschneider Peter12

Affiliation:

1. Fraunhofer IOSB—Applied System Technology, Am Vogelherd 90, 98693 Ilmenau, Germany

2. Department of Electrical Engineering and Information Technology, Ilmenau University of Technology, Ehrenbergstraße 29, 98693 Ilmenau, Germany

Abstract

Thanks to various European directives, individuals are empowered to share and trade electricity within Renewable Energy Communities, enhancing the operational efficiency of local energy systems. The digital transformation of the energy market enables the integration of decentralized energy resources using cloud computing, the Internet of Things, and artificial intelligence. In order to assess the feasibility of new business models based on data-driven solutions, various electricity consumption time series are necessary at this level of aggregation. Since these are currently not yet available in sufficient quality and quantity, and due to data privacy reasons, synthetic time series are essential in the strategic planning of smart grid energy systems. By enabling the simulation of diverse scenarios, they facilitate the integration of new technologies and the development of effective demand response strategies. Moreover, they provide valuable data for assessing novel load forecasting methodologies that are essential to manage energy efficiently and to ensure grid stability. Therefore, this research proposes a methodology to synthesize electricity consumption time series by applying the Box–Jenkins method, an intelligent sampling technique for data augmentation and a probabilistic forecast model. This novel approach emulates the stochastic nature of electricity consumption time series and synthesizes realistic ones of Renewable Energy Communities concerning seasonal as well as short-term variations and stochasticity. Comparing autocorrelations, distributions of values, and principle components of daily sequences between real and synthetic time series, the results exhibit nearly identical characteristics to the original data and, thus, are usable in designing and studying efficient smart grid systems.

Publisher

MDPI AG

Reference41 articles.

1. (2024, February 07). Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32019L0944.

2. Flemming, S., Bender, T., Surmann, A., Pelka, S., Martin, A., and Kühnbach, M. (2023). Vor-Ort-Systeme als flexibler Baustein im Energiesystem? Eine Cross-Sektorale Potenzialanalyse, Fraunhofer-Publica.

3. Koch, A., Schmelcher, S., Sternkopf, T., and Wrede, M. (2023, January 05). Modellierung Sektorintegrierter Energieversorgung IM Quartier—Untersuchung der Vorteile der Optimierung von Energiesystemen auf Quartiersebene gegenüber der Optimierung auf Gebäudeebene. Available online: https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2022/STUDIE_Modellierung_sektorintegrierter_Energieversorgung_im_Quartier.pdf.

4. (2023, January 05). Energieforschungsprogramm der Bundesregierung. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/7-energieforschungsprogramm-der-bundesregierung.pdf?__blob=publicationFile&v=4.

5. (2023, July 19). Available online: https://www.bmwk.de/Redaktion/DE/Dossier/netze-und-netzausbau.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3