Online Optimization of Vehicle-to-Grid Scheduling to Mitigate Battery Aging

Author:

Zhang Qingguang12,Ikram Mubasher2,Xu Kun2

Affiliation:

1. Electronic and Information Engineering, Southern University of Science and Technology, Shenzhen 518055, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

The penetration of electric vehicles (EVs) in vehicle-to-grid (V2G) interaction can effectively assist the grid in achieving frequency regulation and peak load balancing. However, the customer perceives that participating in V2G services would result in the additional cycling of the battery and the accelerated aging of the EVs’ power battery, which has become a major obstacle to the widespread adoption of V2G services. Most existing methods require long-term cycling data and battery parameters to quantify battery aging, which is not suitable for the V2G scenario with large-scale and short-time intervals. Consequently, the real-time and accurate quantification of battery aging for optimization remains a challenge. This study proposes a charging scheduling method for EVs that can accurately and online quantify battery aging. Firstly, V2G scheduling is formulated as an optimization problem by defining an online sliding window to collect real-time vehicle information on the grid, enabling online optimization. Secondly, battery aging is more accurately quantified by proposing a novel amplitude-based rain-flow cycle counting (MRCC) method, which utilizes the charging information of the battery within a shorter time period. Lastly, an intelligent optimization algorithm is employed to optimize the charging and discharging power of EVs, aiming to minimize grid fluctuations and battery aging. The proposed method is validated using a V2G scenario with 50 EVs with randomly generated behaviors, and the results demonstrate that the proposed online scheduling method not only reduces the EFCC of the battery by 8.4%, but also achieves results close to global optimization.

Funder

National Natural Science Foundation of China

Key Program of Natural Science Foundation of Shenzhen

Sustainable Development Science and Technology Fund of Shenzhen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3