Using Deep Learning to Detect Anomalies in On-Load Tap Changer Based on Vibro-Acoustic Signal Features

Author:

Dabaghi-Zarandi Fataneh1ORCID,Behjat Vahid1,Gauvin Michel2,Picher Patrick2ORCID,Ezzaidi Hassan1ORCID,Fofana Issouf1ORCID

Affiliation:

1. Canada Research Chair Tier 1 in Aging of Oil-Filled Equipment on High Voltage Lines (ViAHT), Department of Applied Sciences (DSA), University of Quebec at Chicoutimi (UQAC), Saguenay, QC G7H 2B1, Canada

2. Hydro-Québec’s Research Institute (IREQ), Varennes, QC J3X 1S1, Canada

Abstract

An On-Load Tap Changer (OLTC) that regulates transformer voltage is one of the most important and strategic components of a transformer. Detecting faults in this component at early stages is, therefore, crucial to prevent transformer outages. In recent years, Hydro Quebec initiated a project to monitor the OLTC’s condition in power transformers using vibro-acoustic signals. A data acquisition system has been installed on real OLTCs, which has been continuously measuring their generated vibration signal envelopes over the past few years. In this work, the multivariate deep autoencoder, a reconstruction-based method for unsupervised anomaly detection, is employed to analyze the vibration signal envelopes generated by the OLTC and detect abnormal behaviors. The model is trained using a dataset obtained from the normal operating conditions of the transformer to learn patterns. Subsequently, kernel density estimation (KDE), a nonparametric method, is used to fit the reconstruction errors (regarding normal data) obtained from the trained model and to calculate the anomaly scores, along with the static threshold. Finally, anomalies are detected using a deep autoencoder, KDE, and a dynamic threshold. It should be noted that the input variables responsible for anomalies are also identified based on the value of the reconstruction error and standard deviation. The proposed method is applied to six different real datasets to detect anomalies using two distinct approaches: individually on each dataset and by comparing all six datasets. The results indicate that the proposed method can detect anomalies at an early stage. Also, three alarms, including ignorable anomalies, long-term changes, and significant alterations, were introduced to quantify the OLTC’s condition.

Funder

Natural Sciences and Engineering Research Council

InnovEE

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3