A Direct Chemical Approach to Mitigate Environment Lead Contamination in Perovskite Solar Cells

Author:

Liu Benjamin12ORCID,Jia Zihan23,Chen Zhiliang1

Affiliation:

1. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, No. 111 Jiulong Road, Hefei 230601, China

2. Department of Environmental Studies, Middlebury College, 14 Old Chapel Road, 3245MC, Middlebury, VT 05753, USA

3. The Experimental High School Attached to Beijing Normal University, Beijing 100032, China

Abstract

Current guidelines indicate that the lead levels in perovskite solar cells are sufficiently low, putting them on par with the safety of other lead-containing electronics. Yet, there remains ambiguity regarding the exact environmental impact of lead derived from perovskite. When this lead enters the soil, it has the potential to permeate plants and, subsequently, our food supply, at a rate that is a staggering ten times more than other lead contaminants from human-induced activities. Given this, it becomes vital to ensure that lead does not pollute our environment as we further adopt these technologies. In this study, we propose a novel method using polymer net bones to anchor the lead, which effectively reduces the risk of lead leaching due to rainfall. Perovskite Solar Cells (PSCs) integrated with this polymer net bone show improved operational efficiency and hold significant promise in curtailing lead leakage, reinforcing the ecological integrity of perovskite solutions. When enhanced with Polyvinyl Alcohol (PVA), these PSCs register a notable increase in Power Conversion Efficiency (PCE), scoring 24.7% as opposed to the 22.3% in PSCs devoid of PVA. Additionally, PVA-augmented PSCs outperform in stability when compared to their traditional counterparts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3