Fatigue Life Estimation of Critical Components in a Motor-Energized Spring Operating Mechanism Based on Theory of Reliability

Author:

Ma Hongming1,Qian Guochao1,Zhang Jie2,Chen Jiali2,Zhou Fusheng2,Qiu Pengfeng1,Zhang Aohua3ORCID,Wang Ting4,Yao Xiaofei3ORCID,Liu Zhiyuan3

Affiliation:

1. Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650032, China

2. China Southern Power Grid Research Institute, Guangzhou 510663, China

3. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China

4. Xi’an High Voltage Appararus Research Institute Co., Ltd., Xi’an 710077, China

Abstract

High-voltage switchgear is a key control and protection unit in power systems. The reliable operation of the operating mechanism is essential for the reliable opening and closing of the switchgear. This is a vital guarantee for the safety and stability of the power systems. The spring operating mechanism is a commonly used actuator for circuit breakers at 12–252 kV. However, a reliability estimation method that is convenient, practical and accurate is still lacking. The aim of this paper is to explore a reliability estimation method based on a stress–strength interference reliability theory and a fatigue life theory. The changing rules of the reliability of the main axis, and the closing pawl and opening pawl in the spring operating mechanism during operations, are achieved. The accuracy of the calculated reliability based on theories of stress–strength interference and fatigue life is verified by adopting a test data statistical reliability model based on Weibull distribution. The results show that the reliability estimation method based on stress–strength interference and fatigue life theories has a high degree of confidence. The maximum tolerance is 0.024. The study would help in providing a useful reference for the optimization and durability estimation of a spring operating mechanism and its key components in high-voltage circuit breakers.

Funder

State Key Laboratory of Electrical Insulation and Power Equipment

National Natural Science Foundation of China

Publisher

MDPI AG

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3