Photosynthetic and Morphological Acclimation to High and Low Light Environments in Petasites japonicus subsp. giganteus

Author:

Deguchi Ray,Koyama KoheiORCID

Abstract

Within each species, leaf traits such as light-saturated photosynthetic rate or dark respiration rate acclimate to local light environment. Comparing only static physiological traits, however, may not be sufficient to evaluate the effects of such acclimation in the shade because the light environment changes diurnally. We investigated leaf photosynthetic and morphological acclimation for a perennial herb, butterbur (Petasites japonicus (Siebold et Zucc.) Maxim. subsp. giganteus (G.Nicholson) Kitam.) (Asteraceae), in both a well-lit clearing and a shaded understory of a temperate forest. Diurnal changes in light intensity incident on the leaves were also measured on a sunny day and an overcast day. Leaves in the clearing were more folded and upright, whereas leaves in the understory were flatter. Leaf mass per area (LMA) was approximately twofold higher in the clearing than in the understory, while light-saturated photosynthetic rate and dark respiration rate per unit mass of leaf were similar between the sites. Consequently, both light-saturated photosynthetic rate and dark respiration rate per unit area of leaf were approximately twofold higher in the clearing than in the understory, consistent with previous studies on different species. Using this experimental dataset, we performed a simulation in which sun and shade leaves were hypothetically exchanged to investigate whether such plasticity increased carbon gain at each local environment. As expected, in the clearing, the locally acclimated sun leaves gained more carbon than the hypothetically transferred shade leaves. By contrast, in the understory, the daily net carbon gain was similar between the simulated sun and shade leaves on the sunny day due to the frequent sunflecks. Lower LMA and lower photosynthetic capacity in the understory reduced leaf construction cost per area rather than maximizing net daily carbon gain. These results indicate that information on static photosynthetic parameters may not be sufficient to evaluate shade acclimation in forest understories.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3