Real–Sim–Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning

Author:

Liu Naijun,Cai Yinghao,Lu Tao,Wang Rui,Wang Shuo

Abstract

Compared to traditional data-driven learning methods, recently developed deep reinforcement learning (DRL) approaches can be employed to train robot agents to obtain control policies with appealing performance. However, learning control policies for real-world robots through DRL is costly and cumbersome. A promising alternative is to train policies in simulated environments and transfer the learned policies to real-world scenarios. Unfortunately, due to the reality gap between simulated and real-world environments, the policies learned in simulated environments often cannot be generalized well to the real world. Bridging the reality gap is still a challenging problem. In this paper, we propose a novel real–sim–real (RSR) transfer method that includes a real-to-sim training phase and a sim-to-real inference phase. In the real-to-sim training phase, a task-relevant simulated environment is constructed based on semantic information of the real-world scenario and coordinate transformation, and then a policy is trained with the DRL method in the built simulated environment. In the sim-to-real inference phase, the learned policy is directly applied to control the robot in real-world scenarios without any real-world data. Experimental results in two different robot control tasks show that the proposed RSR method can train skill policies with high generalization performance and significantly low training costs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. A Review of Robot Manipulation Skills Learning Methods;Liu;Acta Autom. Sin.,2019

2. Data-Driven Grasp Synthesis—A Survey

3. Deep Reinforcement Learning: A Brief Survey

4. Reinforcement Learning: An Introduction;Sutton,1998

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3