Numerical Investigation of Locating and Identifying Pipeline Reflectors Based on Guided-Wave Circumferential Scanning and Phase Characteristics

Author:

Liu Weixu,Tang ZhifengORCID,Lv Fuzai,Zheng YangORCID,Zhang PengfeiORCID,Chen Xiangxian

Abstract

The methodology based on reflected guided-wave by a reflector associated with an increase or a decrease in the cross-sectional area has the challenge of determining their location and identity. This paper presents a numerical investigation of a method for locating and identifying the reflector based on guided-wave circumferential scanning and phase characteristics. To determine the axial and circumferential positions of the reflector within the pipeline, the procedures of the guided wave-based circumferential scanning were presented, including data preprocessing, median filter, image smoothing and binary processing. Through theoretical analysis, we obtained the phase relationship between the guided-wave excitation signal and reflection signals generated by a reflector, such as corrosion, crack, weld and support, which caused the change in the cross-sectional area. Consequently, an algorithm based on the phase characteristics was proposed to determine the change and type of reflector. The spatial distances were calculated between the guided wave excitation signals with different phases and the concerned reflection signals, subsequently identifying the change and type of the reflector by comparing the distance values. An identification index named the reliable index for the character of the reflector (RICR) was defined to evaluate the reliability of the predicted results. Numerical and finite element simulation validations of the proposed method were performed. It has been found that if RICR was larger than 1.05, the results predicting the reflector type were reliable. The proposed method was found to be superior relative to the conventional correlation coefficient method according to the numerical results. Finally, the simulation results demonstrated that the proposed method could be potentially applied for locating and identifying reflectors in pipelines.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors

2. Remote monitoring of bond line defects between a composite panel and a stiffener using distributed piezoelectric sensors

3. Defect detection in pipes using guided waves

4. Long range propagation of lamb wave in chemical plant pipe-work;Alleyen;Mater. Eval.,1997

5. The use of guided waves for rapid screening of chemical plant pipework;Alleyne;J. Korean Soc. Nondestruct. Test.,2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3