Cancer Stem Cell Target Labeling and Efficient Growth Inhibition of CD133 and PD-L1 Monoclonal Antibodies Double Conjugated with Luminescent Rare-Earth Tb3+ Nanorods

Author:

Do Thi ThaoORCID,Le Nhat Minh,Vo Trong Nhan,Nguyen Thi Nga,Tran Thu Huong,Phung Thi Kim Hue

Abstract

Rare-earth nanomaterials are being widely applied in medicine as cytotoxicity agents, in radiation and photodynamic therapy, as drug carriers, and in biosensing and bioimaging technology. Terbium (Tb), a rare-earth element belonging to the lanthanides, has a long luminescent lifetime, large stock displacement, narrow spectral width, and biofriendly probes. In cancer therapy, cancer stem cell (CSC)-targeted treatment is receiving considerable attention due to these cells’ harmful characteristics. However, CSCs remain barely understood. Therefore, to effectively label and inhibit the growth of CSCs, we produced a nanocomplex in which TbPO4·H2O nanorods were double conjugated with CD133 and PD-L1 monoclonal antibodies. The Tb3+ nanomaterials were created in the presence of a soft template (polyethylene glycol 2000). The obtained nanomaterial TbPO4·H2O was hexagonal crystal and nanorod in shape, 40–80 nm in diameter, and 300–800 nm in length. The nanorods were further surfaced through tetraethyl orthosilicate hydrolysis and functionalized with amino silane. Finally, the glutaraldehyde-activated Tb3+ nanorods were conjugated with CD133 monoclonal antibody and PD-L1 monoclonal antibody on the surface to obtain the nanocomplex TbPO4·H2O@silica-NH2+mAb^CD133+mAb^PD-L1 (TMC). The formed nanocomplex was able to efficiently and specifically label NTERA-2 cells, a highly expressed CD133 and PD-L1 CSC cell line. The conjugate also demonstrated promising anti-CSC activity by significant inhibition (58.50%) of the growth of 3D tumor spheres of NTERA-2 cells (p < 0.05).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3