Klobuchar, NeQuick G, and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events

Author:

Ciećko AdamORCID,Grunwald Grzegorz

Abstract

The ionosphere is one of the main factors affecting the accuracy of global navigation satellite systems (GNSS). It is a dispersive medium for radio signals, and for multi-frequency receivers, most of its effect can be removed. The problem is for the single-frequency devices, which must rely on a correction model. The motivation of this paper is the adoption of different ionospheric models in GPS/EGNOS (Global Positioning System/European Geostationary Navigation Overlay Service) positioning to mitigate the impact of geomagnetic storms. The aim of this article is to examine the accuracy of GPS/EGNOS single-frequency positioning. In all the examined solutions, GPS L1 data augmented with the EGNOS clock and ephemeris corrections were used in position calculation. The changes were only made to the ionospheric model. The examined scenarios are as follows: without any model (off), Klobuchar, NeQuick G, and EGNOS model. The analysed period is 6–12 September 2017, during which the last strong geomagnetic storm took place. In order to perform a reliable analysis, the study was conducted at three International GNSS Service (IGS) stations in different geographical latitudes, within the EGNOS APV-1 (Approach with Vertical Guidance) availability border. The obtained results prove that the EGNOS ionospheric model meets the aviation positioning accuracy criteria for the APV-1 approach during the studied geomagnetic storm. The EGNOS average horizontal positioning error of 0.75 m was on average almost two times lower than the other solutions. For vertical positioning, the EGNOS error of 0.93 m proved to be two times lower than those of the Klobuchar and NeQuick G models, while it was more than three times lower for the off solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3