Review on an Advanced Combustion Technology: Supercritical Hydrothermal Combustion

Author:

Cui Chengchao,Li Yanhui,Wang Shuzhong,Ren Mengmeng,Yang Chuang,Jiang Zhuohang,Zhang Jie

Abstract

Supercritical hydrothermal combustion, a new and promising homogeneous combustion technology with a wide range of application scenarios and broad development prospects, provides creative ideas and means for the enhanced degradation of organic wastes, hydrothermal spallation drilling, thermal recovery of heavy oil, etc. This technology is elaborated upon in five parts: (1) introducing the main devices including semi-batch reactor and continuous reactor to study the hydrothermal flame in accordance with research institutions, (2) presenting the research status of related numerical simulation from the angles of reaction kinetics and flow-reaction, (3) summarizing the characteristics of hydrothermal flame and combustion by five key parameters, (4) dividing up ignition process and explaining ignition mechanism from the perspectives of critical physical properties of water and heat transfer and mixing conditions, (5) discussing and forecasting its industrial applications including hydrothermal spallation drilling, the thermal recovery of heavy oil, the clean conversion and utilization of coal-based fuel, and the harmless treatment of pollutants. By and large, this paper analyzed in detail everything from experimental equipment to industrial applications, from combustion characteristics to ignition mechanisms, and from summary conclusions to prospect prediction. In the end, herein is summarized a couple of existing paramount scientific and technical obstacles in hydrothermal combustion. Further significant studies in the future should include excellent reactors, advanced monitoring techniques, and powerful computational fluid dynamics.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference119 articles.

1. Oxidative Mechanisms and Kinetics of Organics in Supercritical Water;Wang,2020

2. Treatment of municipal sewage sludge in supercritical water: A review

3. Supercritical water oxidation—Current status of full-scale commercial activity for waste destruction

4. Oxidative Mechanisms and Kinetics of Organics in Supercritical Water;Wang,2020

5. Supercritical water oxidation for environmentally friendly treatment of organic wastes;Li,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3