Fine-Grained Butterfly Classification in Ecological Images Using Squeeze-And-Excitation and Spatial Attention Modules

Author:

Xin Dongjun,Chen Yen-Wei,Li Jianjun

Abstract

Most butterfly larvae are agricultural pests and forest pests, but butterflies have important ornamental value and the ability to sense and respond to changes in the ecological environment. There are many types of butterflies, and the research on classification of butterfly species is of great significance in practical work such as environmental protection and control of agricultural and forest pests. Butterfly classification is a fine-grained image classification problem that is more difficult than generic image classification. Common butterfly photos are mostly specimen photos (indoor photos) and ecological photos (outdoor photos/natural images). At present, research on butterfly classification is more based on specimen photos. Compared with specimen photos, classification based on ecological photos is relatively difficult. This paper mainly takes ecological photos as the research object, and presents a new classification network that combines the dilated residual network, squeeze-and-excitation (SE) module, and spatial attention (SA) module. The SA module can make better use of the long-range dependencies in the images, while the SE module takes advantage of global information to enhance useful information features and suppress less useful features. The results show that the integrated model achieves higher recall, precision, accuracy, and f1-score than the state-of-the-art methods on the introduced butterfly dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3