Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion

Author:

Ahmed Muhammad Ajaz,Lee Jae Hoon,Raja Arsalan A.,Choi Joon Weon

Abstract

Gamma-valerolactone (GVL) was found to be an effective, sustainable alternative in the lignocellulose defragmentation for carbohydrate isolation and, more specifically, for lignin dissolution. In this study, it was adapted as a green pretreatment reagent for milled pinewood biomass. The pretreatment evaluation was performed for temperature (140–180 °C) and reaction time (2–4 h) using 80% aqueous GVL to obtain the highest enzymatic digestibility of 92% and highest lignin yield of 33%. Moreover, the results revealed a positive correlation (R2 = 0.82) between the lignin removal rate and the crystallinity index of the treated biomass. Moreover, under the aforementioned conditions, lignin with varying molecular weights (150–300) was obtained by derivatization followed by reductive cleavage (DFRC). 2D heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC-NMR) spectrum analysis and gel permeation chromatography (GPC) also revealed versatile lignin properties with relatively high β-O-4 linkages (23.8%–31.1%) as well as average molecular weights of 2847–4164 with a corresponding polydispersity of 2.54–2.96, indicating this lignin to be a heterogeneous feedstock for value-added applications of biomass. All this suggested that this gamma-valerolactone based pretreatment method, which is distinctively advantageous in terms of its effectiveness and sustainability, can indeed be a competitive option for lignocellulosic biorefineries.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3