An Improved Scheme for Vibration-Based Rolling Bearing Fault Diagnosis Using Feature Integration and AdaBoost Tree-Based Ensemble Classifier

Author:

Zhao Bingxi,Yuan Qi,Zhang Hongbin

Abstract

Bearings are key components in modern power machines. Effective diagnosis of bearing faults is crucial for normal operation. Recently, the deep convolutional neural network (DCNN) with 2D visualization technology has shown great potential in bearing fault diagnosis. Traditional DCNN-based fault diagnosis mostly adopts a single learner with one input and is time-consuming in sample and network construction to obtain a satisfied performance. In this paper, a scheme combining diverse DCNN learners and an AdaBoost tree-based ensemble classifier is proposed to improve the diagnosis performance and reduce the requirement of sample and network construction simultaneously. In this scheme, multiple types of samples can be constructed independently and employed for diagnosis simultaneously; next, the same number of DCNN learners are built for underlying features extraction and the obtained results are integrated and finally fed into the ensemble classifier for fault diagnosis. An illustration based on the Case Western Reserve University datasets is given, which proves the superiority of the proposed scheme in both accuracy and robustness. Herein, we present a universal scheme to improve the diagnosis performance, and give an example for practical application, where the signal preprocessing and image sample construction methods can also be applied in other vibration-based analysis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3