Abstract
Emotion plays a nuclear part in human attention, decision-making, and communication. Electroencephalogram (EEG)-based emotion recognition has developed a lot due to the application of Brain-Computer Interface (BCI) and its effectiveness compared to body expressions and other physiological signals. Despite significant progress in affective computing, emotion recognition is still an unexplored problem. This paper introduced Logistic Regression (LR) with Gaussian kernel and Laplacian prior for EEG-based emotion recognition. The Gaussian kernel enhances the EEG data separability in the transformed space. The Laplacian prior promotes the sparsity of learned LR regressors to avoid over-specification. The LR regressors are optimized using the logistic regression via variable splitting and augmented Lagrangian (LORSAL) algorithm. For simplicity, the introduced method is noted as LORSAL. Experiments were conducted on the dataset for emotion analysis using EEG, physiological and video signals (DEAP). Various spectral features and features by combining electrodes (power spectral density (PSD), differential entropy (DE), differential asymmetry (DASM), rational asymmetry (RASM), and differential caudality (DCAU)) were extracted from different frequency bands (Delta, Theta, Alpha, Beta, Gamma, and Total) with EEG signals. The Naive Bayes (NB), support vector machine (SVM), linear LR with L1-regularization (LR_L1), linear LR with L2-regularization (LR_L2) were used for comparison in the binary emotion classification for valence and arousal. LORSAL obtained the best classification accuracies (77.17% and 77.03% for valence and arousal, respectively) on the DE features extracted from total frequency bands. This paper also investigates the critical frequency bands in emotion recognition. The experimental results showed the superiority of Gamma and Beta bands in classifying emotions. It was presented that DE was the most informative and DASM and DCAU had lower computational complexity with relatively ideal accuracies. An analysis of LORSAL and the recently deep learning (DL) methods is included in the discussion. Conclusions and future work are presented in the final section.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献