FOCUSeR: A Fog Online Context-Aware Up-to-Date Sensor Ranking Method

Author:

Costa Felipe S.,Nassar Silvia M.,Dantas Mario A. R.ORCID

Abstract

Data obtained from sensors connected to wireless sensor networks must be stored and processed to enable environments such as smart cities. However, with the exponential growth in the number of devices at the edge of the network, it is necessary to implement robust techniques, capable of selecting reliable data sources and meeting low latency requirements, in order to serve critical applications. Thus, to overcome these challenges, this research work presents FOCUSeR, a method for ranking sensors. The method uses the evaluation of data as a criterion for the ranking, allowing us to identify occurrences of failures in sensors and anomalies in environments. In order to meet the requirements inherent to WSNs, the proposed method was developed to run in a fog computing environment, using online learning and constant updating over time to avoid effects such as time drift. The generated ranking lists are managed through distributed hash tables. To provide reliability to the experimental results, a real experimental environment was developed. Moreover, using this developed testbed, a dataset with labels was created, to support the evaluation of the method. In addition, four other real datasets were used, three of which were labeled through artificial fault injection. These datasets were labeled in a related work that focused on injecting artificial faults. The experimental results obtained demonstrate that the proposed approach can provide reliability in the use of sensor data, using low computational resources and reducing latency in the sensor selection process. Precision rates are approximately 98% and Accuracy rates are greater than 94% across all datasets. In addition, the analyses carried out show that the Accuracy has an increasing rate as the number of samples also increases. Results obtained in the failure data recovery also demonstrate the feasibility of the proposal in this resource.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference70 articles.

1. Searching for the IoT Resources: Fundamentals, Requirements, Comprehensive Review, and Future Directions

2. Wireless sensor network survey

3. Internet of Things—Wireless Sensor Networks;Yinbiao,2014

4. That “Internet of Things” Thing: In the Real World Things Matter More than Ideas https://www.rfidjournal.com/articles/view?4986

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Optimal Self-Supervised Multi-Fault Detector for Temperature Sensor Data;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3