Abstract
The products of explosive volcanic eruptions, in particular, volcanic ash, can pose a severe hazard to, for example, international aviation. Detecting volcanic clouds and monitoring their dispersal is hence, the subject of intensive current research. However, the discrepancies between the different available methods lead to detected cloud altitude with significant uncertainties. Here we show the results of an algorithm developed explicitly for high vertical resolution detection of volcanic cloud altitude by using the Global Navigation Satellite System radio occultation (RO) observations. Analyzing the energetic Kasatochi eruption of August 2008 in a case study, we find the volcanic cloud altitudes detected with RO in good agreement (within ~1 km) with cloud altitude estimations from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar backscatter images in the 4 h range between RO and CALIOP acquisitions. The tracking by combined RO and imaging of the volcanic cloud evolution during the weeks after the eruption indicates a promising potential for operational global cloud altitude monitoring.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献