Cognitive Interference Alignment Schemes for IoT Oriented Heterogeneous Two-Tier Networks

Author:

Tian Run,Ma LinORCID,Wang Zhe,Tan Xuezhi

Abstract

This paper considers interference management and capacity improvement for Internet of Things (IoT) oriented two-tier networks by exploiting cognition between network tiers with interference alignment (IA). More specifically, we target our efforts on the next generation two-tier networks, where a tier of femtocell serving multiple IoT devices shares the licensed spectrum with a tier of pre-existing macrocell via a cognitive radio. Aiming to manage the cross-tier interference caused by cognitive spectrum sharing as well as ensure an optimal capacity of the femtocell, two novel self-organizing cognitive IA schemes are proposed. First, we propose an interference nulling based cognitive IA scheme. In such a scheme, both co-tier and cross-tier interferences are aligned into the orthogonal subspace at each IoT receiver, which means all the interference can be perfectly eliminated without causing any performance degradation on the macrocell. However, it is known that the interference nulling based IA algorithm achieves its optimum only in high signal to noise ratio (SNR) scenarios, where the noise power is negligible. Consequently, when the imposed interference-free constraint on the femtocell can be relaxed, we also present a partial cognitive IA scheme that further enhances the network performance under a low and intermediate SNR. Additionally, the feasibility conditions and capacity analyses of the proposed schemes are provided. Both theoretical and numerical results demonstrate that the proposed cognitive IA schemes outperform the traditional orthogonal precoding methods in terms of network capacity, while preserving for macrocell users the desired quality of service.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3