A Study on Ranking Fusion Approaches for the Retrieval of Medical Publications

Author:

Clipa TeofanORCID,Di Nunzio Giorgio MariaORCID

Abstract

In this work, we compare and analyze a variety of approaches in the task of medical publication retrieval and, in particular, for the Technology Assisted Review (TAR) task. This problem consists in the process of collecting articles that summarize all evidence that has been published regarding a certain medical topic. This task requires long search sessions by experts in the field of medicine. For this reason, semi-automatic approaches are essential for supporting these types of searches when the amount of data exceeds the limits of users. In this paper, we use state-of-the-art models and weighting schemes with different types of preprocessing as well as query expansion (QE) and relevance feedback (RF) approaches in order to study the best combination for this particular task. We also tested word embeddings representation of documents and queries in addition to three different ranking fusion approaches to see if the merged runs perform better than the single models. In order to make our results reproducible, we have used the collection provided by the Conference and Labs Evaluation Forum (CLEF) eHealth tasks. Query expansion and relevance feedback greatly improve the performance while the fusion of different rankings does not perform well in this task. The statistical analysis showed that, in general, the performance of the system does not depend much on the type of text preprocessing but on which weighting scheme is applied.

Publisher

MDPI AG

Subject

Information Systems

Reference33 articles.

1. Modern Information Retrieval: The Concepts and Technology Behind Search;Baeza-Yates,2008

2. Search Engines: Information Retrieval in Practice;Croft,2009

3. An analysis of evaluation campaigns in ad-hoc medical information retrieval: CLEF eHealth 2013 and 2014

4. CLEF eHealth 2019 Evaluation Lab

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3